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TECHNICAL NOTE NO. 1536

PLASTIC STKESS-STRAIN RELATIONS

FOR 24-S-TAZUMINUM AZ(XJY

Marin, J. H. Faupel, V. L. Dutton,
and M. W. Bromman

investigation was to determine the yield .-
strength, ultimate strengthj ducti33ty, and plastic stress-strain
relations for 24S-T aluminum alloy when subjected to biaxial stresses.
Both blaxlal stresses considered were tensile and the influence of various
biaxial stress ratios on the mechanical properties was determined.
Biaxial tensile stresses were produced in a tulular specimen %y a
specialdy desiaed testing machine. This testing machine applies loth
sm axial tensile load and internal pressure to the tu’ular specimn,

+t thereby prbducing bisxial tensile stresses in the tube wall. Strains
were measuz%d in the plastic range up to rupture by means of special
electric =-4 CUP gages. Nominal stress-stmh diagrams for the elastic “--

4 -e and true stress-strati diagrams for the plastic range were plotted
for various %iaxial stress ratios.

The data were interpreted by a generalized St. Venant theory in an
attempt to predict the biaxial stress-strain relations in terms of the
uniaxial tensi10 stress-strain relations. The stress-strain rel.atiori8,
as predicted for com%ined stresses by this theory agree approxtmately
with the test results. The yield-strength =Iues, as ~te~ned PY
tests, agree Quite well with the distortion enerpiytheory, and the

.—

ultimate and fracture strengths agree well with the maximum stress theo~..-...-—-.—-

Stress-strain data were oltained from flat control specimens cut
from the tubular specimens and compared with tension test data obtained
from tubular specimens. Except for ductility wlues, t~e results show
that the tension test results for these control specimens agree with the
values for the longitudinal tension tests on the tubular specimens. -——— —

INTRODUCTION

m-.

Aircraft members may he subjected to stresses beyond the yield
stren$th of the material. In many cases the stresses are not simple

. stresses acting in one direction, but the stresses act in several
—
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w
directions; that 1s, the biaxial stresses often occ~ in place of
unlaxial stresses. It is of importance, there-fore,to determine the “
plastic stress-strain relations and the mechanical properties in air- ●

craft mterials sub~ected to combined stresses.

During World War II, liaxial stress plasticity studies were made
on sheet aluminum alloys for the purpose of obtaining basic Information
which could te used to Improve forming operations. It is hoped that
the results given in this report also may be of value in forming problems.

In obtaining the plastic stress-strain relations to rupture for vari-
ous biaxial stress mtiosj Infornwticm is obtained to show the influence
of the biaxial stress ratio on the yield strength, ultimate strength,
true fracture strength, and ductility. It is of great importance to hOW .
the influence of biaxial stresses on strength and ductility, since the
factor of safety and resulting design stresses selected may be appreciably
modified by considering the combined stress effect.

In this investigation stnss-strain data ~ mechanical properties
for various ratios of biaxial tensile stresses were detemnined for
24S-T aluminum alloy by subjecting a tubular specimen to axial tension
and internal pressure. Professor. J. DeJuhasz gave valuable suggestions
on the desi~ of the testing machine. The special testing machine and r
strain-measuringequipment-were built by Messrs. S. S. Eckley, E. Grove,
and H. Johnson. Messrs. J. H. Faupel, V. L. Dutton~ and M. W. Brossman,
performed the tests and computed and plotted the test data. The technl- P
cal assistace given by the foregoing individuals in making possible
this investigation is greatly appreciated. The testing machine was
designed by Joseph Marin, who dirwcted the project and prepared this
report.

—

This work was conducted at The Pennsylvania State Cone@ under the
sponsorship and with the financial assistance of the National Adviso~
Committee for Aeronautics.
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external d.iameter
range, inches

of tubular specimen in plastic

percent error in measured strains in plastic range,
inches

Young’s modulus of elasticity, psi

equivalent-offset strain for com%ined stresses,
inches per inch

offset strain for tension, inches per inch

nominal unltial unit strain, inches per inch

longitudinal and lateral nominal strains in elastic
renge, respectively, inches per inch

longitudinal and lateral nominal strains in plastic
-e, respective=, inches per inch

total axial force, pounds

experimental constant for simple tension

transverse sensitivity constant of SR-4 gages

()plasticity modulus ~~

gage length of tension specinwn in plastlc rmge,
inches

original gage length of tension specimen, inches

Poisson’s ratio

strain-hardening coefficient for simple tension

internal pressure, psi

axial tension load,pounds

nominal reduction in area of tension specimen
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true reduction in area of tension specimen

original wall thickness of tubular specimen,
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inches

wall thickness of tubular specimen in @astic range,
inches

principal stress ratios

true stress in simple tension, psi

equivalent uniexial yield stress as defined hy
distortion energy theo~, psi

yield stress In simple tension, psi

nominal ultimate stress In simple tension, psi

true rupture stress in simple tension, psi ,

true longitudinal and lateral principal stresses,
respectively, psi

elastic longitudinal and lateml principal stresses,
respectively, psi

yield longitudinal and lateral principal stresses,
respectively, psi

nominal ultimate longitudinal and lateral principal
stresses, respectively, psi

true-rupture longitudinal and lateral principal stresses,
respectively, psi

stress components, psi

significant stress, psi

shear stress componbnt, psi

principal shear stresses, psi

true rupture stress in shear, psi

principal shear strains, inches per

,

inch
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G true strain in simple tension,

E,G, E true principal strains, inches
12 3

z sf@ficant stzain, inches per

5

inches per inch

per inch

Inch

al, .52 apparent recorded measured strains in longitudinal
and lateral directions, respectively, inches per inch

al stress ratio
(J 2/)‘e % ‘r a ‘1

stress ratio
(i)
G al

DESCIUPTION OT MATERIAL

The material tested.in this investigation was a fully heat-treated
aluminum alloy designated 24S-T. The material was supplie~ in tulmlar
extruded form in lengths of 16 feet with an internal diameter of 2 inches
end a wall thiclmess of l/~ inch. The nomiml chemical composition, in
addition to aluminum and normal impurities, consists of 4.4 percent
copper, 1.7 percent ma~esiwn, and 0.6 percent manganese. The mechanical- ‘
properties, as furnished by the manufacturer, are: tensile strength,
68,000 psi; yield strength (0.2-peroent offset), 44,000 psi; modulus of
el.asttci~, 10.6 x 10~ psi; percent elongation (in 2 in.), 14 percent;
and Poissonfs ratio, 0.33. —.

Tensile control tests were made on flat specimens machined from the
walls of the tulnzlarextrusions. These tests were made to obtain more
accurate values of the tensile properties and to make possible the
correlation of the conibined-stresstest results with tensile tests on
specimens of the usual type. The dimensions of these control specimens
are shown in figure 1. The longitudinal direction of these specimens
coincided with the longitudinal direction of the tubular extrusions
from whioh they were cut. The tension tehts wen ?mde on a 60,~-pound
hytiullo ~chine, and stmins were meas~d to rupture. Elastic st~ins
were measured with SR-4 electrfo strain gages and plastic stmins were
-asured %y using cliy gages as described for the combined-stress tests.
Four specimens were seleoted from each of the three 16-foot tube lengths
used for the combined-stmss tests. Figure 2 shows the nominal stress-
strain diagrams for the 12 syecimans tested. The values of mcduli of
elasticity and tensile yield strengths based on 0.2-peroent offset, as
olhained from figure 2, are given in talle 1. The nominal values of
tensile ultimate strength and percent elongation %ased on the original
specimen dimensions are also given In table 1.
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Figure 3 shuws the true stress-stmfn diagrams for the tension con-
trol s~ecimens based on the ohsnging dimensions; the values of stress
and strain used are defined by equations (AUO) and (A8) in appendix A.
Tension tests on q metals (references1 and 2)show that in the plastic
range there is an approxinmte linear relation between the true stress u
and true strain G when they are plotted on logarithndc pa~er; that is,
the relation u = kcn is a good approxi-ti on. In order to determine the
constants k ad n in this equation, the ti’uestress-strain data
shown in figure 3 were plotted on logarithmic graph paper, as shown in
figure 4. The values of the material constants k and n, as obtained
from figure 4, are given in ta%le 1. The values of these constants were
o%tained In order.to correlate the ~lastic stress-strain data on tension
specimens of usual dimensions with the simple tension test data of
tubular specimens.

TEST PROCEDURE

Test Specimen

The biaxial-stress test specimens were mchined from tubular
sections having an inside diameter of 2 inches and wall thickness
of 1/4 inch. The dimensions of the machined specimen are shown in
figure ~. The specimen used had an over-all length of 16 inches, with
an intermediate length of 11 inches of reduced wall thickness equal to
O.100& 0.002 inch. The internal surface was left in the extruded form.
The wall thickmess of the tubular specimens was measured with the
apparatus shown in figure 6. This apparatus is similar to a device
developed ly the National Bureau of Stendards for this pur@se. With this
equipment the reading on ELO.0001-inch dial is recorded when the dial
plunger is in contact with the protrusion P on the rod, as shown In
figure 6. The tubular specimen is then supported on the rod protrusion
%y placing the specimen over the rod. With the specimen in this position
a reading on the dial indicator is recorded. The difference in the dial
readings is then a measure of the wall thickness. Wall-thickness values
were in this way measured for six positions around the circumference
and at five equal intervals along the tube length. The ratio of wall
thickness to diameter of the specimen was 0.05, so that the tiaxial
stresses throughout the wall were essentially uniform. The cliameter-
length ratio of the specimen was a%out 0.18, thereby providing a &
sufficiently long section of the specimen free from the bending stresses
produced ly end restraints.

?

.
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Testing Machine

7

A special testing machine was designed and built for applying
internal pressures and axial tensile loads to the tubular spechens.
Figure 7 shows a schematic drawing of the testing machine, and figures 8
and 9 are photographs showing, respectively, the equipment for applying
the axial load exd the internal pressure. The axial tensile load is
applied to the specimen S %y mesms of a direct-current motor M, a
speed-reducing unit U, a vertical pulling rod R, and a lever L.
The -al load is measumd ly a dynamometer D. The lever L transmits
the load to the specimen through spherical seats S* to Insure axiality
of loading. The fulcrum ?? of the lever and the ends of the lever are
provided with hearings. The pulling rod R was provided with a spheri-
cal seat and a universal joint to eliminate bending.

The internal pressure was apylied by en in~ection pump unit P

sffgs. 7and9). The oil used to apply the internal pressure was a
hydraulic pressurizing oi~” of 154 S.S.U. viscosity at 100° F and
had a gour point below -40 l?. Th? oil was suppliedby the pump P
through a high-pressure pipe line to the lower pulling head H and into
the specimen S. The rate of pressure application was controlled~y the
rheostat of a motor-generator set and ly means of a release valve which
discharged surplus oil into the oil supply reservoir. The oil p?essure
was measured ly 10jOOO-psi, 5000-psi.,and 2000-psi U. S. Bourdcm gages G.
Three pressure gages were used to o%tain the necessary accuracy of
pressure measurement during varioua stages of loading. The low-pressure
gage was located at the end of the pressure line so that-it could be shut
off by a check valve when the pressure exceeded 2000 psi. A check valve
was also provided hetween the 5000- and 10,000-psi gages to shut off the
~00-psi gage when pressures exceeding ~00 psi were applied.

The axiality of the load was checked by using three SR-4 electric
strain gages cemented at 120° intervals around the c}rc~erence of a
tulular specimen. The plate supporting the upper spherical se-atwas
then shifted until the strain readibgs on the three strati gages were
equal. The machine was calilmated for axial lcating by inserting a cali-
brated rod with SR-4 gages in place of the specimen S and recording
the readings on the dynamometer D. The axial load on the specimen was
measured wtthln 100 pounds. The yressure gages were calibmted before.
testing emlwere found to have a maximum error of about 2 percent.

—

,

Method of Measuring Strains —

The ekastic strains were measure& over a gage length of 13/16 inch
%y means of SR-4 electric strain gages. Three longitudinal and three..
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transverse elastic gages (elastic gages refer to gages used to measure
elastic stmains) were located at intervals of 120° around the circumference
and at three locations along the length of the syecimen, as shown by the
developed.view of the specimen in figure 10. The strain gages were

T

cemented to the specimens in accordance with the procedure p~scrihed by
their manufacturer. Figure 11 Is a ~hotograph of a tubular specimen
with the elastic SR-4 gages. In order to compensate for changes In
specimen dimensions due to temperature changes, the elastic gages were
connected to an unstressed.dummy specimen of the same material as the
specimen. The wiring diagram used for measuring the strains is given
in figure 1.2,end figure 13 shows the strain-measuringapparatus. The
gages are connected through a switch box B so that each gage can be
successively sultched into the circuit connected with the strain indi-
cator 1, which in turn records the strain directly in microinches per
inch.

The SR-4 gages have a maximum range of about 0.015 inch per inch so
that they could not be used to measure the plastic strains covering the
entire plastic range of the material. It was necessary, therefore, to
develop special plastic strain-measuring equipment for this purpose.
Clip-type gages were used to measure the longitudinal and lateral plastic
strains, as shown in figures 14 and 15. A clip gage consists of a channel-
shaped phosphor-bronze strip to which SR-4 electric strain gages are
cemented on the upper and lower surfaces of the clip-gage bridge (fig. 1~). *
By means of this arrangement an additional temperature-compensatinggage
is not required and increased sensitivity is obtained. By means ofithe=
clip gages a large strain at the pivot points of the clip is reduced to Q

a small measurable strain at the bridge of the clip. The attachment .of
the clip gages to the tubular specimen introduced a problem, since it
was considered inadvisable to solder lugs onto the specimens for attaching
the clip gages. For this reason, special clip-gage attacfints were . .
devised, as shown in figurep 14 and 13. The longitudinal and lateral clip
gages were capable of measuring strains to 0.00005 inch per inch. The
longitudinal clip gages were calibrated %y using a vernier scale, as
shown in figure 16. The calibration was made by taking simultaneous
IXM@Ings on the micrometer and the SIi-hstmin indicator. The longi-
tudinal clip ~es had a gage length of about 2 inches. The lateml
cliy gages were calibrated by the stepped-tube devioe shown in figure 17. ‘
The stepped tube consists ,ofan acc~tely machined tube with lengths of
various diameters. By recording the reading of the SR-4 indicator for
corresponding accurately known diameters of the tube, the calibration of
the lateral strain gages was made possible.

The longitudinal clip gages were applied to the specimen in a pre-
strained condition, since tensile stresses in the specimen reduced the
strain on the gage. The lateral clip gages werw applied with various
amounts of prestrain, the amount depending upon the biaxial state of

.
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stress under test; that is, various amounts of prestrain were necessary
because in some tests the specimens reduced.in d.iameter,whereas in others
there was an increase in diameter. Final strains at rupture were measl-d
to 0.01 inch %y meeme of dividers and a scale.

Method of Testing

The elastic SR-4 clip gageswere first attached to a tu%ular specimen
and connected to the switching lox and strain indicator, as shown in
figure 13. Oil was then pumped through the specimen to remove any air
that might be trapped in the specimen. The &lsc@rge outlet in the
pulling head of the testing machine was then sealed and a protection
shield was yl.acedover the s~ecimen end of the testing machine. Strain
readings for the six elastic and six plastic strain gages corresponding
to zero loading were then recorded. The specimen was loaded to pre-

. deterndned values of axial load emd internal pressure to produce a given
principal stress ratio in the specimen. Strain readings were recorded
for selected load intervals to ru~ture, with the stress n%tio maintained
essentially constant. Fzacture loads were recorded also, _butbecause of
the high rate of deformation it was impossible to o%tain strain readings
immediately preceding fracture. Strain readings for each load incremnt
required less than 1 mirute, and the time of testing a~eraged.about
1 hour.

TEST RESULTS

Conventional Stress-Strain Results

The conventional stress-stmin diagrams are shown in figures 18
and 19. These diagrams represent the nominal stress-strain data and are
‘basedon the original dimensionE and gage length. The strain values
were oltained from the SR-k gages cemented to the specimens. In .

figure 18, a refers to the stress ratio a
2J ‘le’

where d
le

is the

Iongitutinal stress snd a2e is the lateral, transverse, or circ@er-
c2eential stress; that is, a value of u= = O represents a tubular

specimen sub~ected only to sxial tension without internal pressure.
Strain values in figures 3.8emd 19 are plotted for only the strains
nearest the point of rupture of the speci~n.
were tested for each principal stress ratio.
longitudinal stresses plotted in figure 18 is

At least three specimens
The equation for the nominal
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.
pcd2 “
—+I?

4 = pd2 + 4P#
‘le = 7r

~[(d + *t)* - d~ ht(d -1-t)
(1)

The values of the nominal Iateml etresses plotted in figure 19 were
determined %y the equation for a thick-walled tube, sinoe the use of the
formulas for a thin-walled tu%e prcduoes a error of shout 5 peroent in
the stresses; that is, the maximum value of the lateral princi~al stresses
is (reference 3)

t
‘Thevalue of ~ = 0.05 for the tu%es tested, so that the circumfer-

ential stress is defined approximately ly

(2) ‘

(3)

.

Since u2e = _pd/2t is the lateral stress for a thin-walled tube, the

. error produced by neglecting the variati~ in stress throughout the wall
is 5 percent.

The nominal conventional strains were determined from the readings
from the SR-4 indicator and the original gage length of the specimen. For
some strain readings it was necessary to correct the rea~ngs for the “
lateral sensitivity smd for the “combined-stresseffect, since the cali-
bration co~tant supplied by the manufacturer is based on a simple tension
calibration on a steel specimen with a Poisscm’s ratio of 0.285. Equations
for calculating the strains in terms of the ayparent measured strains
corrected for the combined-stresseffect and Poisson’s ratio were
developed ’byBaum3erger(reference 4). The application of these equations
is given in appendix B. The straight dashed lines in figures 18 and 19
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.

corres~ond to the stress-strain relations based on the elasti equations
tfor liaxial stresses, if a modulus of elasticity of 10.3 X 10 psi is

used.

The yield-strength values for axial tension (m = O) were determined
by using an offset strain of 0.002 inch per inch, as indicated.in
figure 18. For the combined-stress tests an equivalent offset was used.,
as pro~osed hy I&rin(referenoes ~ and @ The equivalent-offset stxain is
a st=in value oorre~onding to the uniexial strain offset of 0.002 inch
per inoh hut providing for the hiexial state of stress. The value of the
equivalent-offset strain in terms of the unisxial

where

offset strain is

et (4)

aY
yield strength In simple tension, psi

.,

et offset strain for tension (O&-in ./in. for
test results reported herein)

ee equivalent-offset strain for a partic- stress ratio

Equation (4) determines the offset stmins used in figures 18 and 19
to determine the yield-stress values. Table 2 gives the values of these
yield stresses for each of the %iaxial stress mtios. A comparison of
the liexial with the uniaxial yield strengths, %ased on the tensile yield
strength as determined in the longitudinal direction, is shown ly the
last two columns of ta%le 2. The values in these .columnsrepresent the
stress ratios x = u

lYPy=~Y=ap” 2y y
For a particular stress

ratio, when either x or y is greater than 1, then the yield strength
for the stress ratio is greater than the uniexial longitudinal taisile
yield strength. .

Plastic Stress-Strain Results

The stress-strain diagrams for the plastic range are shown in
figurOs 20 _a21. These diagrams represent true stress-strain values
%ased on changing gage lengths and dimensions of specimens in the ylastic
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me ●
As in figures 18 and 19, the data in figures 20 and 21 are

plotted for cmly the strains nearest the point of rupture. For each
principal stress ratio at least three specimens were tested.

1 The true plastic strains were determined by clip gages and from the
readings of the SR-4 indicator. The conversion of the readings of Lhe
SR-4 indicator to unit plastic strains was made as follows: (1) L&
W1 equal,a given strain reading In inches given by the calibrating

device (stepped tube or vernier scale) and xl equal the strain reading

on the SR-4 indicator corresponding to the strain w on the calihatlng
detice. Then wl/xl equals the strati in inches per division on the

SR-4 indicator. ‘(2) Let yl equal the gage length for the clip gage in

inches. Then wl/xlyl equals the strain in inches per Inch per division

on the SR-4 indicator. (3) Let Z1 equal a given strain reading on the

SR-4 indicator as measured for a tulndar specimen under test. Then the
unit strain on the specimen in inches per inch is

cl=>
‘XIY1 ‘1 (5)

The unit plastic strain, as detemmhed by equation (5), is the nominal
strain based on the original @ge length. Appendix A shows that the
true strain e in terms
equation

If e
$tive ,

and e are the
as det%mined ly

of the nominal strati e’ is given by the

G = loge(l + e’) (6)

?
nominal.lon tudinal and lateral strains, respec-
equation (5 , then the true strains are

}

El = loge(l + 01)

E2 = loge(l + e2)
(7)
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The true strains,
end 21.

The stresses

as define& by equation (7), are plotted in figures 20
..

for the plastic range were determined ly basing them
on the varying dimensions,–since, for–the higher plastic &rain %lues,
the changes in dimensions become appreciable. The true longitudinal
stress csn le expressed hy e~uation (1) for the nominal stress provided
that the thickness t and tiameter d are replaced by their true values.
That is, the true longitudinal stress Is

The determination of the wall thickness ~ and diameter

given in appendix C. Appendix C shows that the wall thicbess

appmximat ely

where t is the original wall thickness and el emd e2 are

% ‘s

‘P ‘s

(9)
..._

the

nominal stmins in the longitudinal and late-l directions, respectively.
The internal diameter ~ is sham in appefix C to _be

~=(d+2t)(l+e2) -2% (1(3)
..

where
‘1

is the new wall thickness as given %7 equation (9). Equation (8)

H now %e used to determine the longitudinal stresses since the Maensions
~ and ~ can he found by equations (9) and (I-O). The true lateral

.s.



14 NACA TN NO. 1536

stresses were calculated by using the stress formula for a thin-walled
tube, rmnely,

●

(11)

An analysis of the stress distribution for a thick-walled tube sub-
~eoted to plastic flow shows that, for the ratio of wall thickness to
diameter of 1:20 used in these tests, a small amount of plastic flow
yields essentially a uniformly distributed lateral stress. This is also
indicated by the fact that for the elastic range the correction produced
by a consideration of the thiok-walled-oyllndertheory produces only a
5-percent error (equation (3)). The values of the diameter ~and

wall thickness ~ used in equation (11) were determined by equations (9)

and (lo).

The true stress-strain diagmms plotted in figures 20 and 21 are
based on stresses and strains as calculatedly equations (7) to (10).
In order to detemuine the fracture points shown in figures 20 and 21>
the measumd true strains at rupture were corrected for the elastic
strains corresponding to the stresses just prior to rupture. ThiS
correction appears to be justified since the remaining strains plotted
Include an elastic strain.

On the basis of the data plotted in figures 20 and 21, tables 3
to 6 were prepared. These tables show, for the various principal stress
mtios, the nominal values of the ultimate stresses, percent elongation,
and ~he true fracture stresses ahd true strains at fracture. These
tables also give a comparison of the mechanical properties for the various
ratios of biaxial stresses ~th the value for uniaxial longitudinal
,tension. Figure 22 shows the typical types of fracture for the various
stress ratios considered.

ANKLYSIS AND DISCUSSION

Biaxial Yield Strength

The difference in uniaxial tensile yield-etrength values in the
longitudinal and lateral directions, as given in table 2 for stress
ratios of 00 and O, makes it difficult to compare the actual yield-
strength values for vafious stress ratios with values predicted by the

4

.
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avaikible theories of failure. The Ufficulty is present since the
various theories of failure available assume equql tensile yield strengths
in the directions of the two biaxial stresses; that is, the theories
assume an isotropic and homogeneous material. Figure 23(a) gives a com-
parison of the yield strengths for various biaxial stresses with the
stress, shear, and distortion ener&g theories of failure (references 5
and 6). The comparison shown in figure 23(a) is based on the uniaxial
tensile strength in the longitudinal direction. In figure 23(a) the
stresses are considered to be biaxial and the radial stress is neglected.
Figure 23(a) shows that, except for the influence of the directional
properties of the tu%es, the Ustortion energy theo~ is a good
approximateon.

Figure 23(%) gives a comparison %etween the distortion ener~ theory
and the test results with the -al stress included. This comparison
is made %y representing the equivalent unisxial stress

2 2 2
‘e = ‘I + 62 + *3 - ’162 - C203 - ‘3=1

.

u. defined %y equation (A23) as a mtio of the uniexial tensile yield
‘strength (rV for the various %iaxial stress zatios; that is, in

figure

should
stress
a good

A

23(%1, if the distortion theory applies, the ratio aelay

he 1.0 as indicated. A consideration of the three-dimensional
effect (fig. 23(b)) shows that the distortion energy theon gives
approximation to the test results.

Ylastic Stress-Strain Results

theo~ called the generalized St. Venant theo~ has Teen yroposed.
With this theory it is possible to predict the true stress-strain
relation under com%ined stresses in ter!nsof true stnss-strain relations
in simple tension. The theory defines a stress and stmin, called the
significant stress and strain (references 7 to 14), as a function of the
principal true stresses and stmins. These quantities are also referred
to as the “effective stress-strain” and “octshedml shear stress-strain
relation” in varibus reports. The values of the significant stress and
strain are derived in appendix A and are shown to he, respectively,

.
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where G1 and 62 are the true longitudinal and lateral strains,

respectively.

(1’)

(13)

Values of the significant stress and strain, as given by equations (12)
and (13), are plotted in figure 24 for each specimen and stress ratio. By
the generalized St. Venant theory the significant stress-strain relations
sho-aldall agree and coincide with the uniaxial tensile true stress-strain
relation. Figure 25 shows the avezage curve for each principal stress
ratio as obtained from figure 24 but plotted with the same origin. The
umiaxial tensile true stress-et=in diagram is also shown in figure 25
for purposes of comparison. It appears from figure 25 that the generalized
St. Venant theory, together with the uniaxial true stress-strain relation,
may be used to define approximately the true stress-stmln relation for
24S-T aluminum alloy suljected to biaxial tensile stresses.

Biaxial Ultimate Strength

Table 3 gives values of the nominal ultimate stresses for various
principal stress ratios based on the original dimensions o#’the specimen.
Figure 26 gives a comparison between the %iaxlal ultimate strengths and
the values from the stress theory of failure. Figure 26 shows that the
maxLmum stress theory is a good approximation since average test values
are within 4 percent of the theoretical values defined by this theory.

Ta’ble4 gives
gives a comparison
theory of failure.

Bisxial Fracture Strengths

values of the true fracture strengths, and figure 27
ofithese stresses with values predicted by the stress
Figure 27 shows that the maximum stress theory is a

gocd approximation. Except for one stress ratio, the average test resdl.ts
agree with the theory within 3 percent. &

.
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Ductility

Values of the measured nominal ad true ductilities are given in
ta%le 5 for the direction of the maximum stress. A comparison of the
ductilities for liaxlal tensile stresses with ~i=i~l values shows
that there is an a~precialle reduction in ductility. A reduction in
ductility for %isxial tensile stress is also predicted %y the gemxiralized
St. Tenant Theo~ (equation (AM)). Theoretical values of true ductility,
as determined hy equation (A&6), were calculated. These values do not
agree with the observed values. Possible reasons for this discrepancy
are the presence of a nonuniform state of stress at the necked-down
section of the specimen, the observation of an average rather thsm a
local strain %y using a 2-inch gage length, or-the inadequacy of the
theory. The foregoing reasons my also explain the reason t~t yredicted
strains at points of instability, as determined ly equations (A56)
amd (A61), give ~asona%le values.

..—

Control Tension Tests

Table 6 gives the mechanical properties of the tension control
specimens * the um-isxialtension properties as o%tained from tests of
the tulwlar specimens. A comparism of the nominal titimate stresses
and the true fracture stress values for the three types of tension test
shown in table 6 shuws that the values for the ten&ion control syecimens
fall %etween the values for the longitudinal and lateral tensile stren@
values of the tulnzlarspecimens. The true ductility in the longitudinal
direction of the tules was found to he somewhat greater than the values
for the other tension tests. The true stress-strain results o%tained
from the uniaxial tension tests of the tu%es were plotted logafithmicall.y
as shown in figure 28, and the values of k and n o%tained from
figure 28 are given in ta%le 6. A comparison of the values of k and n
for the three t.mes of tension test shaws that there is little difference
between the val& of these

be
For the 24S-T aluminum

made:

1. The yield strengths

constants.

CONCLUSIONS

alloy tested.,the following conclusions can

for biaxial tension may he predicted approxi-—
mately by the distortion energy theory.

2. The values of the nominal biaxial ultimate stresses for biaxial
tension agree well with values based on the maximum stress theory.

3. The values of the true %iaxial fracture stresses for biaxial
tension agree well with values %ased on the ~imum stress theo~.
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4. There is a decrease in nominal and true duotility for biaxial
tension compa~d with uniaxlal tension. Huwever, the test values do not
agree with the theoretical values based on the generalized St. Venant
Theory.

5. The genenillzed St. Venant theory oan be used to prediot aPProfi-
matel.ybiaxial stress-strain relations in the plastic range by using the
stress-strain Hlations in simple tension.

The Pennsylvania State College
State College, Pa., March 17, 1947
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APPENDIX A

STRESS-STRAIN PLASTICITY REZAI’IONSFOR COMBINKO STRESSES

The o%~ect of the follcnzhg analysis is to ~resent the currently
acceyted theory used.for predicting the stress-strain relations for
contbinedstresses in the pkstic range. In developing this andysls the
folluwing relations are determined:

1.

2.

3*

k.

5*

6.

7.

8.

True stress-strain relation for simple tension in the phstic
range

The relation defining the %eginning of necking for simple tension

The stress relation defining the Ieginning of yielding for com-
%ined stresses

The stress-strain relation for combined stresses in the ylastic
-e *

The strain equations for combined stresses in the plastic mnge

Yracture-strength relations for combined stresses

Ductility relations for corkdned stresses

Stress and strain -lUSS at beginning of necking for combined
stresses

The yield strength, rupture strength, and ductility for com.ined.
stresses are determined hy use of the true stress-strain relation in
simple tension. h addition, the ylastic stress-strain relatioas under
combined stresses are determined by use of the true stress-strain
relation “insimple tension. .

True Stress-Stmin Relation for Simple Tension

in the Elastic Range

Figure 29 shows a tension test bar of uniform cross section with an
original gage length Lo and cross-sectional area Ao. When a uniaxial

tension load P is applied there is a change in gage length or strain
AL. and a change in cross-sectional area MO, If the load remains
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in the elastic range the st=in and reduction in mea are defined,
respectively, hy

AL.
eo=~

and

That is, e. and q are the axial stmin and reduction In area,

respectively, as USUR13.Ydefined.

(Al)

(A2)

For large deformations which occur in the &stio range beyond the
yield-stress value, the quantities Z!Lo and AA. become relatively

large oompared with the values Lo and Ao. For large st-ins it 1s

then necessary to correct equations (Al) and (A2) to include the influence
of a changing gage length and cross-sectionalarea. If for a load P
the gage length becomes L and the cross-sectionalar a becomes A,
then the true strain G !and true reduotion in area q are

sad’

(A3)

(A4)

Equations (A3) and (A4) define the true strain and true zwduction in area,
respectively, as distinguished from equaticms (Al) and (AZ!),which define
the nominal strain and reduction in area. For elastic strains the valuee
of 00 and G and q and ql are essentially eq~~e

● ✍

Y
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In the plastic ~ge, for most ductile engineering materials, the
volume remains constemt. That 1s,

.

or .

~. L
—=-
A Lo

(A5)

On plachg the value of AO/A from equation (A5) in equation (A3), the

right-hand side of equation
equation (A4), or,

.

.

Equation (A6) shows that in

the true reduction in area

The true strain oan he
in equation (Al)

(A3) is the same as the right-hand side of

1e=q, (A6)

the plastic mnge the true strain ~ equals
*1

● ,

related to the nominal sttin by noting that

LWo L-LO =L-l
‘eo=y=L

o 0 L=

or

$ =l+eo

Placing the value of Z/L. from equation (A7) in equation (A3),

(A7)

e = lo% (1 + eo) (A8)
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l?hetrue reduction in area q~ oan be related to the nominal reduction
in area q by noting that in equation (A2)

AO-A. A
~—= =1-—

A. A.

or

Al—=
A. -q (A9)

Placing the value of A/~ from equation (A9) in eqaation (Ah) yields

d-=- lo&(l - q)

The relation given by equation ,(A6),namely, that the true axial
strain is equal to the true reduction in area, has led to en improved
method of detetining the true stress-strain relation in simple tension
since it is possible by simple lateral measurements on the specimen
during the test to determine c

P
nges in cross-sectional dimensions or

the true reduction in area q .

By obtaining the cross-sectional dimensions of a tensile specimen

at various intervals of load to rupture, the true stress a = ~

A.
and the true strain c > q1 = 10* ~ can be determined and a true

stress-strain relation can bedotted. For flat Specimens It is more
convenient to measure
sectional dimensions.
equation (A3) and the

the axiai strains in place o; the change In cross-
In this case the true strain is given by
true stress is given by equations (A5) and (A7) as

P PL
o —— a (1 + eo)‘Z=AOLO*AO (Ale)

Many tests (references 1 and2) of ductile metals show that when the
true stress and true strain =e plotted on logarithmic yaper the Qoints
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fag approximately on a st=lght line (fig. 30); that is, the true
stress-strain relation for simple tension ~ %8 assumed as given tiy

where k and n are experimental constants and n is called the
hafiening coefficient.

For some ductile matefials the true stress-stmin data depart
slightly from a stmitit line at the lower and upmer stress values

(All)

strain

when
plo~ted-on logarithm; paper. Corrections (refe~&ces 15 and 16) to the
stress and strain values have been proposed to compensate for these dis-
crepancies. These comectlons include the adjustment of the strain values
to exclude the elastic strains and the correction for the stresses at
loads near rupture due to the necking-down of the specimen.

Relation Defining Beginmlng of Necking

for Simple Tension -

The unstshle condition of plastic deformation which occurs $zst
prior to necking-down in a tension specimen is usually olserved in a ‘
tension test; that is, the load in a tenston test increases at a
decreasing rate to a maximum value and then decreases until fracture
occurs● At the maximum load the deformation lecomes localized and the
specimen necks duwn. Two op~osing influences are present in the simple
tension specimen. One is the influence of strain hardening, which tends
to increase the load-ca~ing capacity of the specimen. Opposing this
straightening effect is the decrease in the cross-Sectional area of the
specimen due to the elongation of the specimen. At hegindng of necking
the rate of increase of load-caving capacity due to work hartkming
becomes less than the rate of decrease of load-carxging capacity produced
?JYthe decreasing cross section. This point of maximum load is defined.
ly the ctition dp = 0, that is, when there is no change in the load P.
The point at which this instability occurs Ca.nle determined by the
following analysis: If P is the tensile load, u is the stress, and
A is the area, then

P.Au (A12)
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By equations (A4) snd (A6),
7

or

A
c = loge To

-E
A = Aoe

J
l?romequations (A12) and (A13),

Since P is a function of %oth stress a and strain e,

From equation (A14),

and

● -’G
E=

- Aoue

(A13)

(A14)

(A15) ‘ __

aP &
Placing these values of — and — in equation (A15) results in

aa 36

The begiting of necking is defined _byplacing dP = O in

equatia &I16). Then since Aoe-e is not zero, U - ud~ = o) or

(A17)

that is, neoking or Instability occurs at the load corresponding to the
point where the slope of the true stress-strain curve equals numerically
the stress for that po:nt (fig. 31). This point A can be looated on

r

T
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the true stress-strain curve graphically. That is, since the elope at

EA=~=— ma m=u, if ~ is mde equal to 1 inch per inch,
de m

the point ‘A defines the condition given %y eq-tion (A17).
——

It is more
convenient, however, to define the point A in terms of the strain. In
order to do this, the value of the stress as given %y equation (All) is
substituted in equation (A17). Then .—.

or (A18)

By equation (A18) the strain at the limit of uniform efiension or beginning
of necking is given by the value of the strain hardening exponent n; that
is, in figure 31 0% =n defines the point A.

Stress Relation Defining Beginning

Yielding for Conibind Stresses

of

For ductile metals subjecteh to biaxial stresses, as shown in
figure 32(a), tests show that the stress relation defining the beginning
of yielding is approxiutely defined by the distortion or shear energy
theozg (references 5 and 6). That is,

(A19)

where ax, and T=
‘Y‘

are the ccnblned-stress components as shown

in figure 32(a) and ISy is the yield stress

terms of the principal stremes, as shown in
becomes

for simple tension. In

figure 32(%), equation (A19)

2
‘1 - alu2 + ’22 - ay2

(A20)

That is, if al is the greater of the two principal stresses al and

a2, then for a given value of a the value of u
2

~ determinedly
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.

equation (A20) represents the value of

a biaxial state of stress. If equation

%ecomes

NACATN No. 1536

al at which yielding occurs under

(A20) is divided by a=2, it

x2-xy+y2=l (Ml)

where x and y are the stress ratios x = @y and y = a2/ay.

Equation (A21) is.mpresented graphically by the ellipse in figure 33.
Points inside this ellipse represent stress values below yielding, and a
point on the ellipse represents stress values at which yielding be&ins.

Determination of Yield-Stress Value

Based on Combined-Stress Test Data

In a combined-stress test such as a tu%e subjected to internal
pressure and axial loading, the nominal strains are measured in the
direction of the maximum principal stress and a stress-strain diagram
01 - 61 is plotted as shown in figure 34. In order to define the yield-

stress value for al, several methods have been US*. A rational apprmi-

mte method whioh correlates the detemuination of the yield stress
under combined stresses to the ASTM offset yield stress for simple tensicm
is based on the determination of an equivalent-offset strain ee for com-

bined stresses. That is, an offset strain ee (fig. 34(a)) which is

equivalent to the’offset strain et for simple tension is determined.

The value of this offset strain has %een shown to be (references5 and 6)

where

E

a

et

‘e (.~l- )*’et
modulus of elasticity in simple tension

principal stress ratio
[)a2101

offset strain value for defini~ yield stress in
simple tension

(A22)

.

-.

.

c ._

Y
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The procedure to be used in ayplying equation (A22) is as follows.
For simpla tension, as shown in figure 34(3), the yield stress is
detemdned on the basis of the offset strain Et Ln the usual manner as

speoified hy the ASTM standErds. By equation (A22), for a given stress
ratio a, corresponding to the conbined.-stresstest considered, the
value of ee is determined. With this value of se the value of the

yield stress %
mental value

‘Q
value as given by

Yor triaxial

C2, and a3, as

is obtained as shown in figure 34(a). The e~eri-

~ then le compared with the theoretically predicted

equation (A20).

sta%sses defined %y three pinoipal stresses al,

shown in figure 3~_beginrdng of yieldlng %y the dis-

tortion ener~ theo~ is given by the equtim

(
2

al
)(

2
)(

2
- a2 + u2 - a3 + a - a

)
2

31
= 2a

Y
(A23)

that 1s, If al is the largest of the principal stresses, then the value

of al, as determined by equation (A23) for particular values of a2

andcr 3J zwpresents the value of al for%eglnnfng of yielding.

Stress-Strain Relation for Ccmitined.Stresses

in the Plastic Range

A generalized St. Venant theory which predicts stress-strain
re~ti6ns for corribinedstresses in the plastic Hge has been proposed.
These stress-strain relations are determined on the %asis of the following
assumptions:

,(1)

coincide

and a
3“

(2)

The directions of’the yrincipal strains G12 ‘2’ -d ‘3
with the directions of the principal stresses al, a2,

.

The volume remains constant in the plastic range. l?orconstancy
of volume or no change in volume,

e + 62+ G =0
1 3

(A24)
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&
(3) The ratios of the three principal shear strains to the principal

shear stresses are equal and equal to a qutity kl detemined by the

tension test. The principal shear stresses and strains can be shown to
*

be, respectively,

a3 - al
7.—
2 2

t

and

71=e2-~
3)

For the shear stresses to %e proportional

71 72 73
—s—=- = 2kl
‘1 ‘2 ‘3

(A25)

(x26)

to the shear strains,

(A27)

Placing the values of the shear stresses and strains from equations (A25)
and (A26) in equation (A27) gives

d
●

~i-% c2- ‘3 ‘3-61=k—= —= — 1
al-62 a2-a3 a3-al

(A28)

Solving equations (A24) and (A28) simultaneously for Gl, 62, and G
3

yields

.
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(A29)

For the case of simple tension a2 = a = 0, al = u, and El = ~.
3

Then %y the first equation of equation (=9)

or

— —

.-.

(A30)

Placing the value of kl from equation (A30) in eqmtion (A29) gives

(A31)
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Squaring loth sides of equation (A31) and adding the numerators and
denominators of the resulting equatlons yields

.

or

“ J:[(,t-.2y+(72- .3)2+.(U3- 61)2]’

Equation (A32)
and strains in
Equation (A32)

where

—
—

(A32)

defines the relation between the principal ylastic stresses “
terms of the stress and strain in simple tension.

—

may be written as *

(A33)

and

(A35)

The strain ? and stress ~ as givenby eq’uatims (A34) and (A35)
will be called the significant stress and strain (references 7 to 11).
Combined-stress test data may be represented in terms of d and ? as
shown in figure 36 where ‘5 and ~ are calculatedly equations (A3k)
and (A35). Then by this theory and according to equation (A32) the
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conibined-stresscurve in figure 36 should coincide with the stress-etrain
plot tY- e for slmpl..etension.

The stress 6 and Stmin 3 have also %een called.the effective
stress and strain by Dorn (reference 12). Furthermore, the significant
stress and strain can be shown to le the same as the octahedral shear
stress smd strain as defined by Nadai (reference lk), when the octahedral
shear stress sxd strain are re@aced in terms of the normal stress and
strain as given in equations (A33) to (A35).

A comparison of the si@ficant stress value Z as given by
equation (A35) with the expression for the distortion energy theory as
given%y eqyation (A23) shows that 3 represents a unisxial stress value
with an ekstic distortion energy value equal to the elastic distortion
energy produced by the combined stresses 61, a2, and U3; that is,

in plotting the signifIcant stress-strafn dlagzwn the significant stress
values give a plot of the spare root of the elastic distortion energy
multiplied by a constant. The identity between the si~ificant stress
and strain and the true stress-strain relation in tension assumed ~y this
generalized St. Tenant theory implies that the stress-stmain relation in
the plastic range under conibinedstresses is a function of the elastic
distotiion energy represented by these combined stresses.

Strain Equations for Combined Stresses

By assuming that the generalized St. Venant theory as defined by
equations (A33) to (A35) applies, the d - = relatim C0~cide6 tith tie
cr- 6 relation and equation (#@ may be written ,

z = k~n (A36)

Then
l-n

[

7 --

-=- =—
z ~1/n #n

2+

“1

J--LA
U1 - (J2

)
a2

- U3)2 + (U3 - ‘1)2 =(*37)
2

.

[(
l-n

al - cr2 2+
) )

2
)1
27s

6 ‘2-=3 ‘U3-U1
Z = ~~n

(A38)
2
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.

On placlng the value of...u/u from equation (A38) in equation (A31), the
principal plastic strains in terms of the stresses are

.

()(

l-n
al l/n

‘1= ~
$+pz-~-a- “

( )1
P+ l)= 1 -:-E

2

where aand~ are the principal stress ratios

where al is selected as the

snd t3 are less tham 1.

j3=a/a31
J

maximum principal stress so that cc

(A40)

Equation (A39) co~letely defines the @astic princiyal strains in
terme of the principal stresses and the tension constemts k and n.
For biaxial stresses,

‘3
=0 or ~=0, and equation (A39) becomes

,

% =

.

62 =

‘3 =

al I/n

()(

l-n

E
~2 - )

‘(”)
a+ 1 2n 1 -~

.
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Equations (A39) and (A41) give the plastic principal strains in terms of
the principal stresses.

Fracture Strength Relations for Combined Stresses

There are not sufficient test data to confirm definitely a theorg
predicting stresses at fracture under conibinedstresses; however, test
data for ductile materials subjected to biaxial tension and biaxial
tension and compression are in closest agreement with the shear theo~ of
failure. Tf al is the greatest princigal stress and CT is the alge-

3
bxaically smallest principal stress, then by the shear theo~ of rupture
(references 5 and 6),

or

where dr is the rupture stress in simple tension.

For %iaxial tensile stresses, ‘3 = O anti equation (A42) becomes

For biaxial tensik and

(A42)

(A43)
—.

compressive streasea with al> U2, 131In

tension, U3 in compression, and U2 = O, equation (A42) apylies.

Figure 37 is a graphical representation of the shear theory for biaxial
stresses. For %iaxial tensile stresses equation (A43) shows that the
shear and stress theories are identical.

The
equat1on

equation

Ductility Relatlons for Com%ined Stresses

ductility or maximum principal strain is determined by
(A39) if the value for al at,rupture is substituted. Prom

(A42) this value of al is —
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9

or

or ‘r

‘I=m

.

(A44)

By using this value of al in equation (A39) the strains at ruyture are

~’r=[k(;:p)y’n(a’+~’-@-a-~+.)~@-$-k).1(A45) r

[1
l/n l-n

‘r
‘3r = ~~ (a2+P2-a$-a- (

$+1)= p-;-;
) 2

For liaxial stresses,
a3

=0, p=o, and equation (A45) reduces to

Crr /na’
‘lr=

(7(r -a+’)%)

‘r /na2
62r = (T(F

i

-a+’’)%:)
(A46)

()(

~r l/n
63r=- ~ a2- .+l)%(; +$)
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Stress and Strain Values at Beginning of Necking

for Combined Stresses

In order to detemine the stresses and strains at %eginning of neckhg,
a yroceihme similar to that used for simple tension is applied. Ae for
the case of sim@e tension, the %eglnning of neckt~”~s the point where
the rate of strain hardening, which tends ko increase the 16ad resistance,
is lalanced%y the decrease in load resisteace caused%y the decrease in
the cross section. At this point a maximum load is reached Which is
follow3d _bya decrease in load to rupture. The condition defining this.
point of installlity is illustrated in the following _paragraphsfor the
thin-walled cylinder sul~ected to internal yressure and axial load. For
other mem%ers su%~ected to combined stresses a similar procedure can be
used to determine the condition of instability.

Figure 38 shows a thin-walled cylinder subjected to an internal
pressure p and anaxlal load l?. If t and d are the initial wall
thickness and internal diameter, res~ectivel.y,snd ~ and ~ represent

the values of these

walled cyllnder the

stress u12 are

dimensions in the plastlc -e,

longitudinal stress ‘1 and the

~hen for ~ thin-

circumferential

(A47)

(A48)

In order to determine the insta%llity condition, it is necessary to dis-
tinguish two cases, one in which u2- is the gr&atest stress ~ the

other in which al is the greatest stress.

Case 1 (U2> al).- For a2s U1 a limiting pressure value

determines the instability and the stress cr2 is used. Equation
may’%e expressed in terms of the true strain ~2 %y noting that

(A48)

(A49)
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(A50)

where ~i and e2 are the true strains in the longitudinal and cir-
cumferential directions, respective .

7
(See a pendix C.) Placing values

of ~ and ~ from equations (A49 Yand (A50 in equation (Ah8) gives

P= 2.2(;) e-w%).

By equation (Altl),

(A51) “

(A52)

where

Placing the value of ~~/~2 as given by equation (A52) in equation (Alt9)

P= 2.2(~) s-” (25%) (A53)

The condition defining instability or beginning of neoking is detemined
by the equation

dg=o

or

dp = @du2+—
acT2 a?2

dc2 = O

Using the value of p from equation (A53) in equation (A5k) gives

(A54)

.

.
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where

cc= UJU1

Equation (A57) shows that necking or
slo~e of the true stress-strain curve for

(A55)

instability occurs where the

‘2
equals 3ar2a - 1 multi~ied

by the stress de. Since by equatia (Akl) U2 = f(a)C2n,

By using the value of ~ from equation (A55)
de2

that is, by equation (A55) instehility occurs at a strain value 62

definedby equation (A56). .-

Case 2 For u1sa2,(u~>c72)~- . a ~miting axial load defines insta-

bility. The total axial force is

Placing values

equation (A48)

.

.

of tp and ~ from equatiou (A49) and (A50) in

~ves

l?= 3cdte -El al

(A57)

(A58)
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For instability,

N4CA TN No. 1536

.

(A59)

l?romequatims (A58) and (A59),

For instability in the axial direction the point of instshiliby is
defined when the slope of the true stress-strain curve U1 - 61 equals

the stress al. Since by equation (A41) al = f(a)eln~

d@% = nf(a)eln-l

By using the value of dul/dG1 from equation

‘1 =n

(A60) ,

(A61)

.

a

Eqwation (A61) determines the point of insta%illty as the point on the

z - ~ curve where 61 equals the constant n.
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APPENDIX B .-

CORKECTION OF MEMWRED ELASTIC STRAINS I?ORLM’ERKG SENSITIVITY

AN) COMBINED-STRESS EFIZECT

Baun?berger(reference 3) shows ihat the correct strains, in terms of
the measued strains %ased on the manufacturer’s caliln-ation,by using
a sim@e tensile stress and steel, are

“<w
““w)

where
‘le W ’20 are the corrected elastic stnains in the longi-

tuMnal and lateral directions. The correction to the measured strains
can he more conveniently detemined thanby using equation (Bl); that
is, the ~ercent error in the measured strains canhe found directly by
solving equation (Bl) for the measured stmain 51; that is,

’10 + ‘S ’20
51 =

(1-%2)(1- %3)

The percent error in the strain
’18 is then

(B2)

Er =

[

he-% loo= ~

’10
-6- J)i:’2J’lel 100 “3)
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●

( ) ( )
#

But since ‘1 = ale - W2e @ and e2 = ~2e - Wle /E, equation (B3)

cam be written .

[

)w+(“lefi2e,
Er = 100 1 - )

~: k.2)~ - @s~-:v)

.1

(B4)

Since ks = 0.021 for the SR-4 gages used, (1 - k:) is approximately

equal to 1,”and equation (B4) becomes

(B5)

For the aluminum
to

where a equals

principal stress.
to be applled to

alloy tested, M = 0.33, so that equation (B5) reduces

Er = - l.ga
(B6)

1- 0 .33a

the principal stress ratio ‘2J ’10”
For a given

ratio a, equation (B6) detemines the percent correctl.on —
the measured elastic strains.
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KWENDIX C

EQUATIONS FOR WALL TEICKNRSS AND DIAMETER

IN TEE ITA5TIC RANGE

OF TUBOIAR SPECIMEN

In the plastic range of stresses the original values of the wall
thickness t and internal Wameter d can no longer le used to calculate
the stresses, -d the actual mlues of the ~~ t~~kness %?

and in-

ternal diameter U must %8 used..

The

-byusing

P

true unit strain in the direction of the wall thlchess ~ is,

the definition of true strain (apTendixA),

%
‘3

= loge ~ (cl)

Since the volume is assumed to %e constant in the plastic range,

or (C2)

From equations (Cl) and (C2),

~=tlo*-1(-El-G2) (C3)

The relations between the true strains ‘1 ad ‘2 in the lateral

and longitudinal directions in terms of the nominal strains el and e2

in these directions are (appendixA) —
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By adding equti ons (C4)
resulting equation,

lo&gl

‘1 = loge (1 + 81) (C4)

‘2 = lo% (1 + e2) (m)

and.(C~) and “takingthe antilogarithm of the

(c6)

From equations (c3) ti (c6),

‘p=~~+e~~(~+e2) ‘l+el+-~2+e1e2

Since ele2 .issmall compared with el and ‘e2,equation (C7) mY be

(C7)

written

The

diameter

The

t
t=—

P l+el+e2
(c8)

Internal diameter ~ in the plaetic rsmge equals the external

minus twice the wall thiclmess, or

‘P = ‘%’-2’,
(C9)

external diameter ~’ in terms of the nominal lateral strain

e2 is equal to

%’
= (d+2t)(l+e2) (Clo)

.
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.
From equations (~9)

.

and (CIO) the internal diameter becomes —

43

~=(d+2t)(l+e2) -2tp (Cll)

where ~ is determined by equation (c8).
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TABLE 2.- IIELIl STRJHiH m WmIm RATIOS or BIAXIAL SrRmsm

Biaxial
Btre Ea

Yield Yield Yield. stress ratloEl

ratio, streaa, StreEB, BtF0t3El ,

‘%
“A ‘%Y

‘2 ‘3F
Xm ● y=-

a=— (pal) (%) (pBl) ‘Y
%

%

0 0 1.00 0
(lmgltuddi tenaicm) 47.5 x lo3

.25 4g.8 13.0 x lo3 -1.3 x 103 1.05 .27

.50 54.7 26.6 -2.9 1.15 .56

●75 53.9 41.4 -4*2 1.13 .87

1.03 49.7 51.1 -5●1 1.04 1.07

1.33 39.7 53.8 -5.4 .84 1.13

2.00 2!3 .6 47.3 -4.9 .W 1.00

0 43.2 -4.3 0 .91
(tmnaverae ‘tinahn)

*

I

,

G
CJJ
a
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TABSE 3.- RoMmAIl mm sTREssEs FOR VARIOUHBIAXMslSTRESSRATICS .

Biaxial Nominal ultimate Nominal ultimate strsEiE Strom
da-em ratio,

Speoi7mn srtreee, alu Eitz’efm, u Z%Ltio, Z’%Mo,
*2 2U

=a- (pal) fpsi) x= “w ~ . ‘&~
al au au

(longitudinal tendon)
B8 g;.;x 103 0 1.00 0
B1O o 1.03 0
Clo 7810 c1 1.00 0
D8 75.9 0 .97 0
D1O 77.9 0 1.00 0

Average au = 78.2 0 1.00 0

.25 %5 6$: 17.9x 103 .89 .23
C4 23.6 .98 .30
D4 76;6 20.0 .98 .26

Average %3.6 21.8 .98 .28

.5 B3 g.; 42.0 1.01 .54
42.0

‘$;
1.03 .54

71~8 37.5 .92 .48
●

Avemge 80.0 42.0 1.02 .54

.75 B7 78.0 61.5 1.00 .79
C6 &2.9 64.0 1.06 .82

●

C7 m .0 &.3 1.02 .83
D6 83.0 64.6 1.06 .83

Average 81.0 63.2 1.04 .81

1.00 B4 61.5 64.0 .79 .&
cl 62.0 64.5 .79 .82
D1 56.5 59.0 .72 .75

Average 60.0 62.5 .77 .82

1.33 B2 45.2 63.0 .58 .81
C3 40.4 56.4 .52 .72
C8 46.0 64.o .59 .82
D3 46.0 64.1 ●59 .&

Averags 44.4 61.9 .57 .79

2.0 B6 29.4 61.3 .38 .79
C2 29.6 62.0 .38 .79
D2 30.8 61.5 ●39 .79

Average 29.9 61.7 .38 .79 ,
B9 o .ss.; o .81
C9 o 0 .80

(transve~se tension) D9 o 61:5 0 ●79
●

Average o 62.5 0 .83

%alueenot inaludefl in determining avemge.s.
‘*-
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TABIE 4.-TFIDIFRACI’UKEE31’RE2SESFOR VAFIOUSBIAXIALSrmSs RmIo2
.

Blaxlal True
ntreaaxatlo, Specimn flraotureatremeea,

U2
a = a-l (;%

B8 9.2.6X K@
(G~ynal B1O P.5

Clo 89.0
Da M.o
D1O 91.2

Average Sr = 90.7

.25 %5 74.9
C4 89.4.
D4 81.8

Average 85.6

.50 . BY 87.6
C5 88.8
aD5 ~ .0.

Average 88.2

.75 B7 91.1
. C6 $.:

:2 95:2

Average 93.4

1.0 B4 :.:
cl
D1 62:3

Average 68.6

1.33 B2 51.0
C3 47.0
C8 54.1
D3 53.1

Average 51.3

2 B6 33.3
C2 36.8
D2 36.8

*
Average 35.6

.
39 0
C9

(tranave;’aetension)
o

D9 o
.

Average o

%klueanotinoltiedindeterminingaveragea.

True stresE Streaa
fnmture stresaea, ratio , ratio,

u~
a2r ‘2r

(pi) ‘=~ T=—
‘r

0 1.02 0
0 1.Q2 0
0 .99 0
0 .98 0
0 1.00 0

0 1.03 0

18.9x 1.03 I .83 I .21
24.1 .99 .27 I
20.7 I .+ .23 I
22.4 I .95 I .251

-4--E-H
75.2 1.00 .83
75.2 1.04 .83
74.4 1.01 .82
76.8 1.05 .84

75.4 1.03 .83 I
79.0 .79 .87
77.3 .79 .85
66.8 .69 .74 I
74.4 I .76 I .@ I

71.5 .56 .79
67.6 .52 ●75
77.8 .63 .85
75.2 ●59 .83

73.0 ! .57 .81
1 I

66.6 .37 .73
73.6 .41 .81
73.7 .41 .81

71.3 .39 ! .78
1 1

77.2 0 ;&&
7’2.3 0
76.2 0 .84 I

75.2 I o I .83
I

=s9=” -
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.

TABIE ~.- IIOF41KAIIm TmE Ducmm WmE’S I!oR VAEmJSBIAxrAL

SI!RESS RATIoa

Biaxial Nominal True

drew ratio Bpeoimen ductility ductllit
(in./in.) (in./in. Y

O:m{:lti ,
B8 15.6x 10-2 14.5x 10-2
BIO 13.9 13.0
Clo 15.2 14,1
D8 14.1 13.1
DI.O 14.1 13.1

Average 14.6 13.6

.25 B5 9.3 8.9 .
C4 6.3 6.1
D4 7.8 7.5

Average 7.8 7.5

.50 B3 10.8 10.2
C5 ;.: 7.5
D5 . 4.5

A~erage 7.5 7.4

.75 B7 u?.5 M..8
C6 9.5 9.1
C7 10.9 1.O.3
D6 9.2 8.8

Average 10.5 I.O.O

1.0 B4 7.8 7.5
cl 6.4 6.2
D1 4.5 4.4

Average 6.2 6.0

1,33 B2 4.9 4.8
C3 1.2.5 11.8

- C8 13.9 13.0
D3 6.8 6.6

Average 9.5 g.1

2.0 B6 6.4 . 6.2
C2
D2 U. :::

Average 7.9 7.5

B9 10.0 9.5

(trenaver;etenalon)
C9 7.8
D9 10.7 M

Average 9.5 9.1
4

.

.

.

.

‘--.l&l&$=.=
.-
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TliEIJt 6.- TROE ~.mlMIu COIWI!MM 30R UHMIUKL

!mlEmON Tm!B

. #

—.

Direction mmlnal Tme True
of ulthste flmctum

Cmls-kult,

8pe01mm duotility Caldallt,
stress atreafl eltl%ss

(psi)
(in./in.) (p:i) n

(psi)

Lo

T

tuJmlal B8 78.3 P .6 14.5 ----------- ----------

tubes) B1O 81.0 92●5 13.0 --------.- ------”----

Clo 78.0 $.: 14.2. .---------- -------.--

D8 7!5.9 13.1 ---------- ---------

D1O 7’7.9 91:2 13.1 ---------- ----------

Averqy 78.2 “ 90.7 13.6 1.14 x d 0.22

Tmmmmse 39 63.5
(tubeO)

77.2 9.5 ----”-----

C9

---.,------

62.5 72.3 ------”--- ----------

D9 61.5 76.2 2:: ----------- -----------

Avemge 62.7 75.2 9.1 1.15 .19

Specimen fmm

y:ld&l
tube B 7’2.1 79.3 9.6 1.20 .18

E!peOimn fmm
tube C

tewt)
T?.6 79.5 9●3 1.15 .16

SpeOiwm fmm
tube D 71.2 77.3 8.2 1.08 .15

Avenage 7!2.0 78.7 9.0 1.14 .I.6



T_
r+

J--

“_-l
10

v

Figure 1.- Tensile controlspecimen. All dimensions are in inches.

.

E
03
(TI

, *

,



6

6

4

3

2

1

0

x @

M w w
Nominal strain,in./im

Figure 2,- Conventionalstress-straindiagrams fortensioncon~rolspecimens.

ill
cd



, E 1 . *

I



g-
UI

*

9X

9 x 1o4-

0

6
(b] C Series.

0

8

7 —
D

b

6
e

4
.0C6 .037 .Ooa .fm .01 .@? .0s .04 .05 .0s .07 .Oe ● .1 z m

True sW, in,/tn. cl-l

Ftgure 4.- Plsstic true etress-strain rdstlons for tension control spedmens.
.

-1



.

Cn

m

m 1/16 flat

2+ - 16 EF(SAE) -2

*
3 radius

r
1/8 radius

A- VIEH A-A d

“’-””:~’
Figure 5.- Biaxial-stress Specimen. All dimensions are in inches.
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@ Clip-gage location (plastic-range gages)

~ Elastic -ranf 5-gage location
I

Location around circumference ~ ‘-—

Figure 10. - Developed surface of tubular specimen showing location

of elastic-range and plastic-range gages.
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Elastic-range gages (1 to 6)

I 1
.

●

I 3

I 4

I 5

I 6

fi●

Clipgsges(7 to 12)

—

I

FL
I I

o7 2 0
Reference switch’ Gage factor

switch
.

q:u”ng -

.

Moving strain
indicator

~mpensating o
off

SR-4 strain gage On
!

recording instrument Switch

I

&

Q::ta

Measuring gage Compensating gage

*111O o 1 110
42 120 0 2120.

03 130 0 3 130
04 140 0 4 140
05 150 0 5 150
OC 160 0 6160

47 170 7 170
--08180 -o 8180

09190 09 190
010 2i)o 010 200

I A I

Figure 12. - Wiring diagram for strain measurements.
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Figure 13.- Shain-measuring apparatus.
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. gage holder
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I I [ ~ Lateral clip gageI
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Figure 14.- Clip gagez for measurement
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of plastic Gtrains.
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Elgure 15. - Longitudinal and lateral strain-measuring devices. Ml measurements are in inches
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Figure 19.- Lateral nominal stress-strain diagrams
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Figwe 20.- Lor@udinal true strese- struin diagrams. R dsnotee rupture point.

-=2%=-



82 NACA TN No. 1536

.

*

—
“> -

●

“@gJrms*hAl
Fwre 21- Lateral true stress-strain diioms” R dwmtes” &p& pckt.

.-—

.



, , . *
●✞

Figure 22.- ‘Typicaltypes of fracture for various stress ratios.

v



.
.

.

“

.

.



NACA TN ND. 1536 85

.

;
A

1.2

1.0

.8

.6

.4

2● ,

o

)

oAverage testvalues I
‘Distortion energy theory

—-- Maximum shear theory
I

—- —Maximum stress theory

o /

i

o .2 .4 .6 .8 1.0 1.2

Stress ratio, x = u~ylay

(a) Comparison of yield strengths with theories of failure.

Figure 23. - Comparison of test results with theories.
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